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ABSTRACT 
 
 This paper describes new developments in motion cueing algorithms for the control 
of flight simulator motion systems.  The research discussed is being conducted in four 
phases: linear motion cueing algorithm development, vestibular and human perceptual 
system modeling, nonlinear cueing algorithm development, and cueing algorithm 
performance testing.   
 A variation of the so-called optimal algorithm was formulated using simulated 
aircraft angular velocity input as a basis.  Models of the human vestibular sensation 
system, i.e. the semicircular canals and otoliths, are incorporated within the algorithm.  
Results compared favorably with the coordinated adaptive washout algorithm, yielding 
similar results for angular velocity cues while eliminating false cues and reducing the tilt 
rate for longitudinal cues. 
 Literature studies in motion sensation and the vestibular system have been conducted 
to develop vestibular system sensation models that are most consistent with both 
experimental and theoretical analyses.  Improved models of both the semicircular canals 
and the otoliths are proposed.  Literature studies of the characteristics of visually induced 
motion sensation and the visual-vestibular interaction have also been conducted.  An 
integrated human perception model is proposed that includes both visual and vestibular 
sensation and incorporates the interaction between the stimuli.  The addition of the 
optokinetic influence in the linear algorithm was shown to improve the response to a 
surge input, producing a specific force response with no steady-state washout and a 
further decrease in the tilt rate. 
 A novel approach to motion cueing is proposed, combining features of the adaptive 
and optimal algorithms, and incorporating the improved vestibular models and the 
proposed integrated motion perception model.  The algorithm is formulated as an optimal 
control problem with a nonlinear control law.  The control law requires the matrix Riccati 
equation to be solved in real time; a neurocomputing approach is used to solve this 
computationally challenging problem.  Results for the yaw mode reveal that the nonlinear 
algorithm improves the motion cues by reducing the magnitude of negative cues.  The 
heave mode responses show a reduction in the peak onset displacement command that, 
when scaling the response within the motion platform limits, will yield an increased onset 
cue.   
 The effectiveness of the nonlinear algorithm as compared to the adaptive and linear 
optimal algorithms will be evaluated on a motion platform with a series of pilot 
controlled maneuvers.  The results of this evaluation will be used to assess motion cueing 
algorithm performance.       
  
    
 
  

 
 
 



INTRODUCTION 
  
 The objective of a motion system, when used in conjunction with a visual system, is 
to stimulate the pilot so that he can perceive the required motion cues necessary to fly the 
simulator within the same performance and control activity as the aircraft. An example of 
a motion system is the six-degree-of-freedom hexapod shown in Figure 1. 
 
  

  

 

 

 

 

 

 

 
Figure 1.  Six-Degree-of-Freedom Hexapod Motion System. 

 
 

 Simulator motion allows the pilot to react more quickly to simulated aircraft 
dynamics as compared to visual stimuli alone, thus enabling him to correct (and reduce 
the magnitude) of any deviation sooner than having to wait for the information visually.  
Studies have been reported that support motion improving pilot performance [1], [2], [3], 
[4]. 
 The vehicle simulation structure for a motion system is shown in Figure 2.  The 
operator control inputs drive a mathematical model of the vehicle dynamics, generating 
the vehicle states.  The desired motion cues and motion platform states are produced by 
passing the vehicle states through the motion cueing algorithm.  The desired motion 
platform states are then transformed from degree-of-freedom space to actuator space, 
generating the desired commands to the six actuators.  The actuator motion commands 
serve as input to the closed-loop platform dynamics, resulting in actual simulator motion. 
 The motion cueing algorithm generates the desired motion cues that are constrained 
within the physical limits of the motion system.  The magnitude of the cues is reduced by 
scaling and limiting the vehicle states.  The duration of the cues is limited by a technique 
known as washout.  Washout involves returning the motion platform states to a neutral 
position following the initial, or “onset” portion of a motion cue, thus “washing out” the 
resulting cue at levels below the pilot’s perceptual threshold.  This is accomplished by 
passing the vehicle state through a high-pass filter, removing long-duration (low-



frequency) motion components.  Early approaches to washout filtering used simple (first- 
and second-order) linear filters in which the ratio of onset to washout duration was fixed.  
Nonlinear approaches were later developed where this ratio varied with time. 
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Figure 2.  Vehicle Simulation Structure for a Motion System. 
 
 
 The otolith organs in the human vestibular system sense both acceleration and tilting 
of the pilot’s head with respect to the gravity vector.  Since the otoliths cannot 
discriminate between acceleration and tilt, this phenomenon, known as tilt coordination, 
can be used to advantage in motion simulation.  For long-term specific force simulation, 
acceleration cues simulated by high-pass washout filters are augmented by tilting the 
motion platform at a rate below the pilot’s perceptual threshold.  This additional cue 
results from passing the vehicle acceleration through a low-pass filter to produce the 
desired long-duration tilt cue.  Tilt coordination is implemented in a motion cueing 
algorithm by adding additional filters in the longitudinal (pitch/surge) and lateral 
(roll/sway) modes that produce the additional cues.  For this reason four separate modes 
are implemented in a motion cueing algorithm: longitudinal, lateral, yaw, and heave. 
 Two viable approaches to motion cueing were identified from research conducted by 
Wu and Cardullo [5].  The first technique is a modification of the coordinated adaptive 
washout algorithm, or “adaptive algorithm” developed at NASA by Parrish, et al. [6].  
The objective of this algorithm is to adjust the motion platform response based upon its 
current motion states by minimizing a cost function in real time.  The cost function is 
minimized by continuously adjusting a set of adaptive parameters by the method of 
steepest descent.  This technique has at its basis the minimization of state error between 
the aircraft and simulator. 



 The second technique is the “optimal algorithm”, based on that which was first 
developed by Sivan, et al. [7], and later implemented by Reid and Nahon [8].  This 
algorithm uses higher order linear filters that are developed, prior to real time 
implementation, using optimal control methods.  This method incorporates a 
mathematical model of the human vestibular system, constraining the pilot sensation 
error between the simulated aircraft and motion platform dynamics.  An improved 
development of this algorithm is discussed in further detail in the next section. 
 In this research a novel approach to motion cueing is proposed that combines features 
of the adaptive and optimal algorithms.  This algorithm incorporates human vestibular 
models along with a proposed integrated human perception model.  The algorithm is 
formulated as an optimal control problem with a nonlinear control law, resulting in a set 
of nonlinear cueing filters that are adjusted in real time based on the motion platform and 
perceptual error states.  A neurocomputing approach to solve the matrix Riccati equation 
in real time is discussed.  Preliminary results for this proposed algorithm are presented. 
 The effectiveness of the proposed algorithm as compared to the adaptive and linear 
optimal algorithms will be evaluated on a motion platform with a series of pilot 
controlled maneuvers.  A description of the proposed methods of evaluation is given.   
 
 

LINEAR OPTIMAL MOTION CUEING ALGORITHM 
 

Problem Description 

In developing a set of optimal washout filters, the problem is to determine a matrix of 
transfer functions W(s) that relate the desired simulator motion input to the aircraft input 
such that a cost function constraining the pilot sensation error (between simulator and 
aircraft) is minimized.  The structure of this problem is illustrated in Figure 3. 
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Figure 3.  Optimal Algorithm Problem Structure. 
 
  
 A mathematical model of the human vestibular system is used in the filter 
development.  The optimal algorithm generates the desired transfer functions W(s) by an 
off-line program, which are then implemented on-line.  W(s) will relate the simulator 



motion states to the aircraft states by uS = W(s) × uA.  The simulator states uS are then 
used to generate the desired motion platform commands. 
 In the original development the washout filters were applied in the pilot head 
reference frame.  Reid and Nahon [8] noted that this frame selection was chosen to 
eliminate sensation cross-couplings that made the development of W(s) more 
complicated.  Wu [9] demonstrated that this location of the center of rotation at the pilot’s 
head resulted in excessively large actuator extensions in some input cases.  He suggested 
that the optimal algorithm be reformulated in the simulator reference frame with the 
center of rotation located at the centroid of the simulator motion-base. 
 The question has arisen as to what aircraft and simulator control inputs are the most 
appropriate for the optimal algorithm.  The previous developments [7], [8] suggested a 
control input for either the longitudinal or lateral mode with linear acceleration and 
angular displacement as control inputs. Wu [9] developed an approach using linear 
acceleration and angular acceleration for the longitudinal mode.  This approach showed 
advantages in controlling additional modes that were not available in the original 
development.  In addition, since the semicircular canals behave as a transducer for 
angular velocity input in the range of normal head movements, an approach using angular 
velocity as input is desired.  In this research an optimal algorithm based on simulated 
aircraft angular velocity inputs is developed. 
 
Linear Optimal Algorithm Development 
 
 The algorithm development with angular velocity input for the longitudinal 
(pitch/surge) mode is given below.  The input u is formulated as 
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where  is angular velocity, and aθ x is the translational acceleration, with each term 
respectively set equal to u1 and u2.  The sensed rotational motion  is then related to the 
input u by  
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where x1~3 are the semicircular canals states, and ASCC, BSCC, CSCC, and DSCC represent the 

semicircular canals model in state space.  The sensed specific force is then related to 
the input u by  
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where x4~8 are the otoliths states, and AOTO, BOTO, COTO, and DOTO represent the otoliths  
model in state space.  The transfer function representations for these models are discussed 



in the next section.  The representations in Eqns. (2) and (3) can be combined to form a 
single representation for the human vestibular model: 
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where x1~8 and ˆ 1y  are, respectively,  the combined states and sensed responses, and AV, 
BV, CV, and DV  represent the vestibular models  as one set of state equations: 
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 It is assumed that the same sensation model can be applied to both the pilot in the 
aircraft and the pilot in the simulator as shown in Figure 3.  We then define the vestibular 
state error xe  =  xS − xA (where xS and xA are the respective vestibular states for the 
simulator and aircraft), and the pilot sensation error e, resulting in 
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where uS and uA represent the simulator and aircraft inputs as given in Eqn. (1).    
 It is also necessary for the control algorithm to explicitly access motion states such as 
the linear velocity and displacement of the motion platform, which are desired to appear 
in the cost function.  For this purpose additional terms are included in the state equations: 

 
 ,  (6) =d d d d Sx A x + B u

where xd represents the additional motion platform states: 
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The aircraft input uA consists of filtered white noise, and can be expressed as 
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where xn are the filtered white noise states, w represents white noise, with An and Bn 
given as 
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where ω  and ω  are the first-order filter break frequencies for each degree-of-freedom. 
The state equations given in Eqns. (5), (6), and (7) can be combined to form the desired 
system equation 
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where y is the desired output, and  represents the combined states.  
The combined system matrices A, B, C, D, and H are then given by 
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A cost function J is then defined as 
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where E{ } is the mathematical mean of statistical variable, Q and Rd are positive semi-
definite matrices, and R is a positive definite matrix.   Eqn. (9) implies that three 
variables are to be constrained in the cost function: the sensation error e along with the 
additional terms xd and uS which together define the linear and angular motion of the 
platform.  The cost function constrains both the sensation error and the platform motion. 
 The system equation and cost function can be transformed to the standard optimal 
control form as shown in Kwakernaak and Sivan [10] and noted in Reid and Nahon [8] 
by the following equations: 
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The cost function of Eqn. (10) is minimized when 
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where P is the solution of the algebraic Riccati equation 
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Defining a matrix K, where uS = Kx,    
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K can be partitioned corresponding to the partition of x in Eqn. (8): 
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Noting that xn = uA, remove the states corresponding to the xn partition from Eqn. (14): 
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After taking the Laplace transform of Eqns. (14) and (15), the following equations are 
obtained in the Laplace domain: 
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 The optimal filter matrix W(s) is computed using a set of MATLAB scripts.  The 
weighting matrices Q, R, and Rd given in the cost function of Eqn. (9) are selected and 
adjusted to produce the desired motion platform commands.  From these weights and the 
vestibular models the standard optimal control matrices of Eqn. (10) are computed.  The 
algebraic Riccati equation of Eqn. (12) is solved with the MATLAB function “care”.  
The solution for W(s) is then computed.  Common poles and zeros are cancelled in each 
transfer function, yielding a set of seventh-order filters for the longitudinal mode.  These 
filters are then used in a SIMULINK model that generates the linear acceleration and 
angular velocity responses.  Similar developments will yield filters for the lateral, yaw, 
and heave modes. 
 Prior to input to the transfer matrix W(s), the aircraft inputs uA are transformed from 
the simulator reference frame to the inertial reference frame, and are then scaled with a 
nonlinear gain algorithm proposed by Wu [9].  The simulator inputs uS are integrated to 
produce the desired motion-base displacement commands that are then used to compute 
the desired actuator commands as noted in Figure 2. 
 
Linear Algorithm Evaluation 
 
 Comparisons of longitudinal degree-of-freedom commands are made between the 
optimal algorithm with angular velocity input and the adaptive algorithm.  Test runs are 
generated with single degree-of-freedom aircraft inputs.  The translational break 
frequency as given in Eqn. (15) was increased from 1 rad/s to 4π rad/s in both algorithms 
to minimize an onset false cue for responses to a surge step input.  Comparisons are made 
of specific force at the pilot’s head and platform angular velocity, as well as responses 
filtered through vestibular system models.   
 The specific force responses to a ramp to step surge input of magnitude 1 m/s2 and 
slope 3 m/s2/s are shown in Figure 4.  The adaptive algorithm produces a significant false 
cue (-0.5 m/s2) at onset, after which the peak is followed by a “sag” (decrease followed 
by increase) for about 5 seconds until a steady magnitude is reached.  The optimal 
algorithm produces no false cue with a smooth ramp at onset followed by a smaller peak 
magnitude and faster washout.  The sensed specific force responses show the simulator 
pilot response from the optimal algorithm, while reduced in magnitude, closely tracks the 
shape of the sensed response of the aircraft pilot.   The adaptive algorithm does not track 
the shape of the aircraft pilot sensed response as well, especially for the duration where 
the sag occurred. 
 Angular velocity (pitch) responses due to tilt coordination generated by the surge cue 
are shown in Figure 5.  The responses show a lower peak velocity at onset for the optimal 
algorithm by about 1 deg/s but followed by a negative peak of about 1 deg/s before the 
platform settles to zero velocity.  The adaptive algorithm settles to zero velocity with no 
negative peak. 
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Figure 4.  Comparison of Adaptive and Optimal Algorithm Responses for Aircraft Surge 
Input. 
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Figure 5.  Platform Tilt Coordination Commands for Aircraft Surge Input. 
 
 
 Angular velocity responses to a pitch acceleration doublet input show that the optimal 
and adaptive algorithm responses are nearly identical; each response is a proportionately 
reduced magnitude of the aircraft angular velocity input.  The specific force response in 
the z-axis due to the pitch cue is smaller in magnitude (and closer to the aircraft response) 
for the optimal algorithm as compared to the adaptive algorithm response; this is 
consistent with the slightly larger pitch cue that results for the optimal algorithm [11]. 



VESTIBULAR SYSTEM MODELING 
 
Semicircular Canals Model 
 
 Zacharias [12] reported that a linear second-order model of the semicircular canals 
was first developed to explain the observed characteristics of vestibular induced eye 
movements in fish (pike).  This model was further refined by the "torsion-pendulum" 
model of Van Egmond, et al. [13], and is later developed from a systems approach by 
Mayne [14].  The transfer function for this overdamped system is 
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where α is the angular acceleration of the head with respect to an inertial axis, θe is the 
angular displacement of the endolymph with respect to the head, and τ1 and τ2  are time 
constants, with τ1 >> τ2.  Schmid, et al. [15], showed that θe and the cupula deflection φc 
are related by φc = −aθe, where  is a constant.    a
 Further studies showed that rotational sensation is more complex than the torsion-
pendulum model.  Young and Oman [16] formulated an adaptation operator and cascaded 
it with the torsion-pendulum model to resolve the conflicts between the sensed response 
predicted by the torsion-pendulum model and the perceptual response measured in 
experiments.  The addition of adaptation results in the following transfer function: 
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where τa is the adaptation time constant, and the gain K noted by Zacharias [12] is equal 
to .   1 2aτ τ
 Zacharias [12] reported several experiments suggesting an additional lead component.  
With the addition of this component with time constant τL, a model representing both the 
semicircular canal dynamics and the neural transduction dynamics is now established: 
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  Fernandez and Goldberg [17] determined average parameters for the semicircular 
canals of the squirrel monkey by direct measurement of the afferent nerves due to various 
angular acceleration inputs of different amplitudes and frequencies.  Their transfer 
function relates the afferent firing rate of the vestibular nerve to the angular acceleration 
input: 
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The model parameters were estimated with the exception of the short time constant, 
which was determined analytically based on the physiology of the endolymph. 
 Parameters for man are difficult to measure because direct measurement of the 
afferent nerve outputs of the vestibular system cannot be done and therefore most 
experiments were based on subjective responses or nystagmus tests.  Several experiments 
reported by Zacharias [12] were performed to determine parameters of the torsion-
pendulum model, with Young and Oman [16] also estimating the adaptation time 
constant.  Zacharias [12] reported a value for τL of 0.06 seconds resulting from nystagmus 
tests. 
 From these results, a transfer function that can best relates the afferent response of the 
semicircular canals to the acceleration stimulus is proposed: 
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Otolith Model 
 
 Zacharias [12] reported that Meiry first investigated subjective responses to linear 
motion, obtaining a transfer function relating perceived velocity v  to stimulus velocity v: ˆ
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where τ1 and τ2  are otolith time constants, with τ1 >> τ2, and K is a gain term.  Young and 
Meiry [18] noted that this model correctly predicted the phase of the perceived velocity 
and the time to detect motion under constant acceleration, but failed to predict the 
otoliths’ response to sustained tilt angle as indicated by behavioral and physiological 
data. Young and Meiry then proposed the following revised model of specific force 
sensation that presumed the equivalence of both linear acceleration and tilt sensation: 
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From the Young-Meiry model [18] and physiological knowledge of the otolith organ, 
Ormsby [19] estimated a model of the otolith afferent dynamics that neglected the short 
time constant: 
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 Fernandez and Goldberg [20] studied the discharge of otolith neurons in response to 
sinusoidal force variations in the squirrel monkey. Both regularly and irregularly 
discharging neurons were measured.  Fernandez and Goldberg identified a ratio of 



regular to irregular units to be approximately three to one.  The frequency responses 
resulted in a transfer function of the form 
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 In Eqn. (25), the term Hv is a velocity-sensitive operator with a fractional exponent 
that provides most of the gain enhancement and phase lead found primarily in the 
irregular units.  The value of kv reflects the effectiveness of the lead operator and is 
closely related to the slope of the gain curve.  The median parameters for both regular 
and irregular units for Eqn. (25) are given in Table 1 [20]. 
 

Table 1.  Median Parameters for Regular and Irregular Units. 

 kv kA τA τM GDC 

Regular 0.188 1.12 69 sec 16 msec 25.6 ips / g 
Irregular 0.440 1.90 101 sec 9 msec 20.5 ips / g 
   
 Note that the gain terms for the Fernandez-Goldberg model are about one half of the 
gain value chosen by Ormsby.  Due to the adaptation mechanism HA in the Fernandez-
Goldberg models, these gains would require a long duration step input to be realized in 
steady-state.  Hosman [21] suggested a gain term of less magnitude than that used by 
Ormsby (GDC = 33.3) that provides an improved approximation to the Fernandez-
Goldberg responses. 
 Because of the fractional exponent in the transfer function of Eqn. (25), an 
elementary solution to its response cannot be readily obtained.  However, an approximate 
solution to the response can be derived through the application of fractional calculus as 
described by Miller and Ross [22].  By using fractional calculus, the regular and irregular 
unit responses to a step input have been derived [23]. 
 By using the long and lead time constants reported by Ormsby, selecting the short 
time constant from the Fernandez-Goldberg model, and including the gain suggested by 
Hosman, the following transfer function results for the afferent otolith dynamics [23]: 
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INTEGRATED HUMAN PERCEPTION MODEL 

 
Visually Induced Motion Sensation 
 
 The general characteristics of visually induced self-motion in the absence of 
confirming vestibular stimuli as reported by Young [24] and supported by other 
researchers is summarized.  Young noted two distinct classes of visual cues for flight 
simulation: the foveal cues, the high acuity, high information-dense central field cues that 



must be “read” to be interpreted, and the peripheral cues, the wide-field, lower acuity, 
rapidly moving cues that generate non-cognitive motion perception.  These cues 
correspond respectively to the high static acuity, cone-filled fovea, and the high dynamic 
sensitivity, rod-filled periphery of the retina.   
 Brandt, et al. [25] demonstrated that the peripheral visual field is of primary 
importance in stimulating self-motion over the central visual field.  Brandt, et al. [26] 
also demonstrated that background stimulation is dominant over foreground stimulation; 
movement in the background induces self-motion while if the foreground moved the 
stationary background inhibited circularvection.  Held, et al. [27] showed that the spatial 
frequency of the visual scene also determines its effectiveness in generating self-motion.  
Young [24] commented that the peripheral visual field display should have a sufficient 
number of borders such as stars, clouds, or ground features to induce the perceived self-
motion.  Young also noted that the visual field velocity determines the magnitude of the 
self-motion up to a saturation velocity that most likely corresponds to the blurring of the 
visual field associated with increased visual acuity. 
 Young [24] found that the approximate frequency response for both circularvection 
and linearvection is flat from static inputs up to a frequency of 0.1 Hz, beyond which it 
decreases at least as rapidly as a first-order filter.  Berthoz, et al. [28] confirmed these 
results for forward linearvection, with similar results obtained by Van der Steen [29] for 
yaw circularvection. 
 The latency of the onset of visually induced motion has an impact on motion 
perception in flight simulation.  Several experimenters have quantified this phenomenon.  
Brandt, et al. [25] observed the latency to onset of circularvection to be about three to 
four seconds and independent of the stimulus magnitude.  Howard and Howard [30] 
demonstrated that the latency is reduced with the presence of stationary objects in view 
and with fixation of the subject’s gaze.  With a stationary visual frame similar to the 
simulator cockpit video monitor and with fixation, they observed latencies of about 5 
seconds that were relatively unchanged with stimuli from 5 to 25 deg/sec.  Berthoz, et al. 
[28] observed latencies for linearvection of about 1 to 1.5 seconds for velocities measured 
between 0.2 and 1 m/sec. 

 
Visual-Vestibular Interaction Model 

 Zacharias [31] reported that both psychophysical and neurophysiological studies 
support the theory that visual and vestibular cues are jointly processed to provide for a 
perceived sense of self-motion.  Young [32] noted that visual motion cues dominate the 
perception of velocity in the steady state and at frequencies below 0.1 Hz.  At higher 
frequencies, the vestibular cues will tend to dominate.  Confirming vestibular cues, in the 
direction opposite to the visual field, can produce a rapid onset of the visual self-motion 
that is sustained by vision after the vestibular cues have been washed out.  When visual 
and vestibular motion cues are in conflict, either due to the direction of motion or to a 
difference in magnitude, the vestibular cues will initially dominate.  Young [32] first 
proposed that visual and vestibular cues are independently processed to produce two 
estimates of motion that are compared with one another to provide some measure of cue 
conflict. 



 Zacharias [31] developed a cue conflict model for yaw perception.  For low conflict, 
i.e. when the cues are confirming, the perceived motion is calculated from a weighted 
sum of the two estimates.  For high conflict, the weighting on the visual cue is reduced 
and that on the vestibular cue is increased until the conflict is reduced.  Borah [33] later 
developed a visual-vestibular interaction model that involved the implementation of an 
optimal estimator as a “central processor” representation of sensory inputs that included a 
modified version of the cue conflict model proposed by Zacharias.  Van der Steen [29] 
proposed a self-motion perception model in which vestibular and visual stimuli are 
combined to describe perceived self-motion.  However, unlike the model proposed by 
Zacharias, cue conflict estimation is not considered. 
 Van der Steen [29] noted that psychophysical experiments concerning vection 
showed that the visual estimate of self-motion “attracts” the vestibular estimate of self-
motion. This “visual attractor” component uses the visual and vestibular system’s 
estimates of perceived self-motion.  The difference between these cues is passed through 
a first-order low-pass filter HVA with time constant τVA that represents the gradual build-up 
of self-velocity, forming the optokinetic influence: 
   

 1 .
1VA

VA

H
s

=
+ τ

 (28) 

 A new visual-vestibular interaction model for rotational motion is proposed [34] and 
is shown in Figure 6.  A second model for translational motion is also proposed with a 
similar structure that incorporates a model of the otolith dynamics [34]. 
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Figure 6.  Proposed Visual-Vestibular Model for Rotational Motion. 



 
 Using a concept suggested by Van der Steen [29], the vestibular model consists of the 
afferent dynamics cascaded with a neural filter gain, resulting in a perceived response to 
vestibular stimuli.  The optokinetic influence proposed by Van der Steen is also 
implemented.  The time constant τ  governing the optokinetic influence is chosen to be 
1.592 seconds, which is equal to the 0.1 Hz low-pass filter break frequency noted by 
Young [24]. 

VA

 As proposed by Zacharias [31], the visual cue is passed through an internal model of 
the vestibular dynamics to produce an “expected” vestibular signal that is then subtracted 
from the actual vestibular signal.  To allow for long-term resolution of steady state 
conflict the absolute value of this error is passed through an adaptation operator to 
generate a conflict signal ωerr.  The adaptation operator determines how long a steady 
state inter-cue conflict should be allowed to continue by washing out the conflict signal. 
 From ωerr the weighting of the optokinetic gain K is then computed by a modified 
cosine bell function suggested by Borah [33].  The gain K varies between zero and one.  
A large conflict signal greater than the conflict threshold ε will drive the visual gain to 
zero, whereas a small signal below the threshold value will drive the gain to a value 
between zero and one, approaching one as ωerr approaches zero.  For ωerr < 0, the gain 
remains at one.  As proposed by Borah [33] the vestibular path gain remains fixed at 
unity.  The conflict threshold ε is chosen to equal the vestibular indifference motion 
threshold.  A time constant τw = 8 seconds is chosen to produce the latency responses 
noted in the literature. 
   
 

NONLINEAR MOTION CUEING ALGORITHM 
 

Algorithm Formulation 

This approach has been suggested by Ish-Shalom [35], and Cardullo and Kosut [36] 
have proposed the algorithm structure.  The structure of the problem is illustrated in 
Figure 7. 
 The system equation is developed by the same technique shown for the linear optimal 
algorithm.  The parameters for the revised semicircular canals and otolith models (Eqns. 
(21) and (26) respectively) will be used, and the confirming case of the integrated 
perceptual model (with the optokinetic gain fixed at unity) will also be incorporated into 
each perceptual channel.  The system equation and cost function are then transformed to 
the standard form of Eqn. (10).  The cost function is then augmented with an additional 
term  proposed by Anderson and Moore [37]: 2 te α
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where  is positive definite,  is positive semi-definite, and the scalar coefficient α 
represents a minimum degree of stability in the closed-loop system where α  > 0. 
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Figure 7.  Problem Structure for Nonlinear Optimal Cueing Algorithm. 
 
 
 Anderson and Moore [37] show that the system equation and cost function can be 
transformed to eliminate the exponential term, resulting in  
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where  , , and .  We now wish to compute the simulator 
control input u  that minimizes the cost function given in Eqn. (31).  For this problem, 

 is positive definite, (  is controllable and  is 
observable.  Under these conditions, the cost function is minimized when 
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where , and P  is the solution of the algebraic Riccati 
equation 
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Anderson and Moore note that for α , the resulting closed-loop system 0>
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is asymptotically stable, with the property that all the eigenvalues lie to the left of -α, i.e. 
the degree of stability of the closed-loop system is at least α.  A nonlinear control law is 
chosen to make α dependent upon the system states: 
 
  (34) ,= +T T

1 d 2 de Q e x Q xα

where Q1 and Q2 are weighting matrices and are at least positive semi-definite.  As the 
system states increase in magnitude, i.e. large perceptual errors and platform motions, 
then α increases, resulting in faster control action and increased system stability.  For 
small state magnitudes there will be limited control action.  The actual nonlinear control 
law is then determined by solving the Riccati equation of Eqn. (32) in real time as a 
function of α. 
 
Real Time Solution of the Riccati Equation 

 Solving the nonlinear Riccati equation in real time is a computational challenge as a 
new solution is required at each time step.  Since the solution to the preceding time step is 
available, it is advantageous to use this as an initial solution when computing the solution 
for the current time step, thus reducing the computational burden.  The initial Riccati 
equation solution to the linear optimal algorithm that is computed off-line in MATLAB is 
available and can be used as the initial solution for the first time step.  To this end we 
desire a technique that assumes the initial solution is “close” to the final solution at a 
given time step.   
 Three techniques have been evaluated for implementation.  Blackburn [38] developed 
a method of solution by using a Newton-Raphson iteration.  With this technique, 
computation of the Jacobian matrix as a Kronecker product is required along with matrix 
inversion, which can result in a singular solution for an ill-conditioned system.  
Neurocomputing approaches suggested by Wang and Wu [39] and Ham and Collins [40] 
eliminate both operations, thus reducing the real time computational burden.  For these 
reasons, the neurocomputing approaches are further evaluated.  The neurocomputing 
approach proposed by Ham and Collins [40] uses a structured neural network for 
obtaining the Riccati equation computational solution V as shown in Figure 8. 
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Figure 8.  Structured Neural Network for Solving the Riccati Equation. 



The error signal  in Figure 8 is given as ( )te
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minimized using the method of steepest descent, resulting in a system of first-order 
matrix differential equations 
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where µ > 0 is the learning rate parameter, and as shown in Figure 8.  

Ham and Collins [40] note that the external excitatory vector input signals  are a set 
of linearly independent bi-polar vectors given as 

( ) ( ) ( )t t=v V z

( )z t
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where each vector is presented once to the neural network in an iteration, i.e. for one 
iteration there is a total of n presentations of the bi-polar input vectors. 
 
Nonlinear Algorithm Evaluation  
  
 Responses using the neurocomputing approach suggested by Ham and Collins [40] 
are examined.  The yaw mode responses for an angular acceleration doublet of 0.1 rad/s2 
magnitude and 5-second duration are shown in Figure 9.  A learning rate parameter µ = 
10-4 is used in computing the solution to the Riccati equation.  Note that the negative 
angular velocity cue is reduced with the nonlinear algorithm.  The displacement 
command shows an increased peak magnitude along with a reduced overshoot.  The 
command returns to the neutral state (zero displacement) in the same time as the response 
from the linear algorithm, while the response with the neurocomputing solver of Wang 
and Wu [39] requires more time to return to the neutral state.   
 For the heave mode based upon the integrated perception model, the off-line solution 
to the Riccati equation initially produced one closed-loop eigenvalue of zero, which 
results in the linear algorithm being very difficult to tune off-line.  This eigenvalue is a 
result of including the optokinetic channel in the algorithm formulation; the formulation 
based on the vestibular model alone does not produce a zero eigenvalue.  A state 
reduction using the MATLAB function “minreal” was performed on the perceptual 
model, removing one state and in turn eliminating the closed-loop eigenvalue of zero. 
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Figure 9.  Nonlinear Algorithm Yaw Mode Responses with Riccati Equation 
Neurocomputing Solver. 
 
 
The heave mode responses for a square pulse input of 1 m/s2 and 10-second duration are 
shown in Figure 10.  A learning rate parameter µ = 6 × 10-5 is used in computing the 
solution to the Riccati equation.  The onset cue is sustained, with the negative cue at the 
end of the pulse reduced in magnitude as compared to the linear algorithm response.  The 
displacement command shows a reduction in the peak displacement that can be used to 
advantage when scaling the response within the motion platform limits, i.e. a larger 
percentage of the onset cue will remain as compared to the linear case.  In this mode an 
upper limit of 0.12 is placed on α  that will affect the magnitude of the sustained response 
for large magnitude inputs; an increase in this value results in a false cue at the end of the 
pulse along with a distorted response.  The response with the neurocomputing solver of 
Wang and Wu [39] generated a very small difference from the linear response. 
 The systems of first-order differential equations given for the neurocomputing solver 
in Eqn. (37) require a numerical integration algorithm.  A series of algorithms (Euler, 2nd-
order Adams-Bashforth, 2nd- and 4th-order Runge-Kutta) have been evaluated for each 
neurocomputing solver.  No improvement was noticed with the higher-order methods as 
compared to the Euler method for either algorithm. 
 The responses using the neurocomputing solver proposed by Wang and Wu [39] are 
sensitive to the magnitude and stiffness of the closed-loop eigenvalues, with the 
responses dependent upon the choice and structure of the activation functions.  The 
approach proposed by Ham and Collins [40] utilizes a structured network without 
activation functions; the responses are more robust with respect to the closed-loop 
eigenvalues.  This solver also yields improved responses and convergence with less 
computational burden; only one solver iteration was required per time step.  For these 



reasons the neurocomputing solver proposed by Ham and Collins is chosen for 
implementation in the motion system. 
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Figure 10.  Nonlinear Algorithm Heave Mode Responses with Riccati Equation 
Neurocomputing Solver. 
    
  
 A model of the nonlinear algorithm has been developed for the two-degree-of-
freedom longitudinal mode.  The initial formulation with the integrated perception model 
resulted in a higher-order system (13th-order) that is much larger than either yaw or heave 
(5th-order).  Two closed-loop eigenvalues of zero resulted from the linear algorithm 
solution.  The first originated from the platform state θ  noted in Eqn. (14).  The second 
resulted from the optokinetic channel for the translational degree-of-freedom.  Removal 
of the additional platform state combined with a state reduction of the perceptual model 
eliminates the two closed-loop eigenvalues of zero, reducing the system to 11th-order. 
 Figure 11 compares the linear algorithm response based upon the integrated 
perceptual model to the response based upon the vestibular models only.  A ramp to step 
surge input of 0.5 m/s2 and slope 3 m/s2/s is applied to both models.  Note that the 
specific force response with the perceptual model increases to the aircraft input after 
onset and does not wash out as a function of time, resulting from the steady-state tilt 
angle sustaining a constant magnitude.  A decrease in the pitch angular velocity or tilt 
rate is also observed along with a reduction in the negative peak to about 0.5 deg/sec. 
 Application of the nonlinear algorithm does not change the specific force response as 
compared to the linear algorithm.  An increase in the simulator angular velocity 
command is observed, with a faster return to zero magnitude.  This results in an increase 
in the peak tilt angle, with the response settling faster to the steady-state tilt angle.  A 
small reduction in the simulator displacement also results.  The benefit of these changes 
needs to be further investigated combined with the application of nonlinear scaling in 
producing actuator extensions within the motion platform limits. 
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Figure 11.  Surge and Tilt Coordination Commands for Perceptual-Based Linear 
Algorithm. 
 
   
 Comparisons of degree-of-freedom commands will be made between the proposed 
algorithm and the adaptive algorithm.  Nonlinear scaling parameters will be implemented 
for the nonlinear algorithm to optimize performance within the actuator extension limits 
of the motion system.  Algorithm degree-of-freedom and actuator extension commands 
will be computed for test runs for each algorithm in the longitudinal, lateral, yaw, and 
heave modes.  Comparisons will be made of specific force at the pilot’s head and 
platform angular velocity, as well as responses filtered through the modified vestibular 
system models and the integrated perception model. 
     
 

CUEING ALGORITHM PILOTED PERFORMANCE TESTING 
 
 The effectiveness of the nonlinear algorithm as compared to the adaptive and linear 
optimal algorithms will be assessed in piloted simulations.  Testing will be conducted on 
two motion systems at the NASA Langley Research Center: the Visual Motion Simulator 
(VMS) and the Cockpit Motion Facility (CMF).  Preliminary testing is currently being 
performed on the VMS with the adaptive and linear optimal algorithms.  As a result of 
these preliminary tests the nonlinear scaling coefficients will be adjusted for each mode.  
Final testing and evaluation will be conducted on the CMF with the nonlinear algorithm. 
 A group of pilots will execute a set of maneuvers on the CMF.  For each maneuver 
the simulated aircraft dynamics is generated from manual pilot control.  The pilot control 
inputs (throttle, elevator, aileron, and rudder) will be sampled for each maneuver.  
Accelerometer measurements for specific force and angular acceleration at the platform 
motion-base centroid in six degrees of freedom will be recorded for each maneuver.        
 Pilot perception (as computed from the proposed vestibular models and the integrated 
perception model) will be recorded for each maneuver.  From the pilot control inputs, 



power spectral density, crossover frequency, and phase angle will be analyzed to 
determine the effect of motion platform response upon pilot performance.  The pilot will 
also evaluate each maneuver subjectively, using the Cooper-Harper rating scale as a 
metric.  From these data, the fidelity of each algorithm will be benchmarked in 
replicating pilot performance and workload of actual aircraft maneuvers. 
 
 

SUMMARY 
 
 An improved linear optimal algorithm based upon angular velocity input was 
developed.  Cueing responses to a surge input show this algorithm has improved tracking 
capability without a false cue and a lower tilt rate at onset, while producing a lower 
magnitude specific force response as compared to the adaptive algorithm.     
 Literature studies of the human vestibular system led to mathematical models of the 
semicircular canal and otolith organs with revised parameters.  An integrated model of 
human motion perception was proposed that includes the vestibular models and 
incorporates the nonlinear interaction between the vestibular and visual stimuli.  The 
addition of the optokinetic influence in the linear algorithm was shown to improve the 
response to a surge input, producing a specific force response with no steady-state 
washout and a further decrease in the tilt rate. 
 A nonlinear cueing algorithm was developed that combines features of the adaptive 
and optimal algorithms, and incorporates the vestibular and integrated perception models.  
A nonlinear control law was proposed that requires the solution of the Riccati equation in 
real time.  A neurocomputing approach has been implemented for this task.  Results for 
the yaw mode reveal that the nonlinear algorithm improves the motion cues by reducing 
the magnitude of negative cues.  The heave mode responses show a reduction in the peak 
onset displacement command that, when scaling the response within the motion platform 
limits, will yield an increased onset cue.  The neurocomputing solver will yield responses 
that are robust with respect to the closed-loop eigenvalues, with less computational 
burden as compared to a second neurocomputing solver. 
 Further investigation is needed to assess the improvements resulting from the 
nonlinear algorithm for two-degree-of-freedom longitudinal and lateral modes.  
Comparisons of algorithm responses, as well as responses from the vestibular and 
integrated perception models will then be made with the adaptive algorithm.  The 
performance of the new algorithm will then be demonstrated in piloted simulations on the 
cockpit motion facility (CMF) at the NASA Langley Research Center. 
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